Synthesis of 2-Sulfenylindenones via One-Pot Tandem MeyerSchuster Rearrangement and Radical Cyclization of Arylpropynols with Disulfides

Xing-Song Zhang, Jun-Ying Jiao, Xiao-Hong Zhang,* Bo-Lun Hu, and Xing-Guo Zhang*
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China

(S) Supporting Information

Abstract

A tandem annulation of arylpropynols with disulfides has been developed for the synthesis of 2sulfenylindenone derivatives. The reaction pathway involves one-pot tandem Meyer-Schuster rearrangement of arylpropynols and successive radical cyclization with disulfides. Various arylpropynols and disulfides with a number of functional groups are compatible in this reaction that affords the corresponding 2 -sulfenylindenones in moderate to good yields.

Indenones are important structural scaffolds in a great number of pharmaceuticals and biologically active molecules, ${ }^{1}$ including alcoholic fermentation activators, ${ }^{2}$ fungicides, ${ }^{3}$ potential estrogen binding receptors, ${ }^{4}$ and anticancer agents (indotecan and indimitecan). ${ }^{5}$ Moreover, they are also versatile intermediates in the synthesis of some natural products such as steroids ${ }^{6}$ and gibberellins. ${ }^{7}$ Consequently, the synthesis of indenones has received much attention, and a variety of synthetic strategies have been developed for the construction of these carboncycles. Traditionally, indenone derivatives were prepared from the intramolecular Friedel-Crafts-type cyclizations or the addition of Grignard reagents to indandiones. ${ }^{8}$ Palladium or rhodium-catalyzed annulations of internal alkynes with 2-halophenyl carbonyl compounds ${ }^{9}$ or their equivalents ${ }^{10}$ provided other powerful methods for the synthesis of substituted indenones (Scheme 1, eq 1). Recently, the intramolecular cyclization of 1,3-diarylpropynones triggered by superacids ${ }^{11}$ or radicals ${ }^{12}$ has been shown to be an efficient method for the synthesis of indenones. For example, Zou and co-workers reported a manganese-mediated addition of thiophenol to 1,3 -diarylpropynones for the synthesis of thiolated indenones (eq 2). ${ }^{12 a}$ While significant progress has

Scheme 1. Synthesis of Indenones

been made in the construction of indenone skeletons, the development of new practical and general protocol for the synthesis of diverse multisubstituted indenones is still strongly desired. As part of our continuing interest in the synthesis of sulfenylated aromatic cyclics, ${ }^{13}$ we wish to report an iodinemediated one-pot tandem Meyer-Schuster rearrangement and radical cyclization reaction of arylpropynols with disulfides. This reaction was conducted in a one-pot, two-step process and had greatly simplified synthetic strategies, ${ }^{14}$ leading to 2 sulfenylindenones in moderate to good yields (eq 3).

We chose the model reaction between 1,3-diphenylprop-2-yn-1-ol $\mathbf{1 a}{ }^{15}$ and diphenyl disulfide 2a to optimize the reaction conditions, and the results are listed in Table 1. Initially, the reaction of substrate $\mathbf{1 a}$ with diphenyl disulfide $\mathbf{2 a}, 30 \mathrm{~mol} \%$ benzoyl peroxide (BPO), and 2 equiv of $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ was performed in acetic acid at $120^{\circ} \mathrm{C}$ under a N_{2} atmosphere, but only a trace amount of the desired product 3 -phenyl-2-(phenylthio)-1H-inden-1-one 3 was observed (entry 1). Considering that the iodine source could promote disulfide to yield in situ the free radical RS* or the active RSI, ${ }^{13 \mathrm{~d}}$ we subsequently investigated the reaction in the presence of 2 equiv of ICl . As expected, the product yield was dramatically increased to 61% (entry 2). Encouraged by these results, we tested various iodine sources such as $\mathrm{PhI}(\mathrm{OAc})_{2}$, NIS, and I_{2} (entries $3-5$, respectively), and the results showed that I_{2} provided the best results and product 3 could be isolated in 82% yield (entry 5). However, lower yields of product 3 were obtained in the absence of BPO or when AIBN or TBHP was used as an additive (entries 6-8, respectively). We next examined various oxidants, including $\mathrm{H}_{2} \mathrm{O}_{2}$, AgOTf, $\mathrm{Ag}_{2} \mathrm{CO}_{3}$, and $\mathrm{Cu}(\mathrm{OAc})_{2}$, but all were less effective than $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ (entries 9-12, respectively). During the screening of solvent, dioxane, DMF, MeNO_{2}, and MeCN were found to provide lower yields (entries 5 and 13-16,

[^0]Table 1. Screening Conditions ${ }^{a}$

 1a		 2a	$[1]$ Additive/Oxidant		
entry	I source	additive	oxidant	solvent	yield (\%) ${ }^{\text {b }}$
1	-	BPO	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	AcOH	trace
2	ICl	BPO	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	AcOH	61
3	$\mathrm{PhI}(\mathrm{OAc})_{2}$	BPO	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	AcOH	47
4	NIS	BPO	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	AcOH	55
5	I_{2}	BPO	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	AcOH	82
6	I_{2}	-	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	AcOH	37
7	I_{2}	AIBN	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	AcOH	56
8	I_{2}	TBHP	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	AcOH	47
9	I_{2}	BPO	$\mathrm{H}_{2} \mathrm{O}_{2}$	AcOH	35
10	I_{2}	BPO	AgOTf	AcOH	31
11	I_{2}	BPO	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	AcOH	37
12	I_{2}	BPO	$\mathrm{Cu}(\mathrm{OAc})_{2}$	AcOH	67
13	I_{2}	BPO	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	dioxane	33
14	I_{2}	BPO	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	DMF	21
15	I_{2}	BPO	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	MeNO_{2}	74
16	I_{2}	BPO	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	MeCN	$52,60^{c}$
17^{d}	I_{2}	BPO	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	AcOH	56

${ }^{a}$ Reaction conditions: 1a $(0.2 \mathrm{mmol})$, 2a (0.2 mmol), I_{2} (2 equiv), BPO ($30 \mathrm{~mol} \%$), and $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ (2 equiv) in HOAc (2 mL) under a N_{2} atmosphere at $120^{\circ} \mathrm{C}$ for $24 \mathrm{~h} .{ }^{b}$ Isolated yield. ${ }^{c}$ With $5 \mathrm{~mol} \% \mathrm{TfOH}$ was added. ${ }^{d}$ At $100{ }^{\circ} \mathrm{C}$.
respectively). Meanwhile, a 74% yield of product 3 was obtained when MeNO_{2} was used as the solvent (entry 15). In view of the results that showed that a strong acid could promote the MS rearrangement of the alkynol, ${ }^{16} 5 \mathrm{~mol} \%$ TfOH was employed in MeCN, but an only 60% yield of product 3 was obtained (entry 16). The yield was reduced to 56% when the reaction was performed at $100^{\circ} \mathrm{C}$ (entry 17).

With the optimal conditions in hand, we next investigated the substrate scope of various arylpropynols and disulfides (Table 2). Initially, a wide variety of disulfides were tested, and the results demonstrated that aryl disulfides with both electrondonating and electron-withdrawing groups underwent the cyclization reaction smoothly. In general, aryl disulfides with electron-donating groups gave the products in yields higher than the yields of those bearing electron-withdrawing groups, and MeNO_{2} was found to be a solvent that was more suitable than HOAc for some substrates with electron-withdrawing groups. For example, p-tolyl disulfide provided product 4 in 88% yield, while fluoride disulfides in MeNO_{2} provided products 6-8 in 61, 63, and 65% yields, respectively. Similarly, chlorophenyl disulfides afforded their corresponding products $\mathbf{9 - 1 2}$ in $55-71 \%$ yields. Furthermore, products 13 and 14, with the strong electron-withdrawing nitro group, were isolated in 60 and 67% yields, respectively. Gratifyingly, alkyl disulfides such as diethyl disulfide underwent the cyclization reaction successfully to give product 15 in a 54% yield.

To verify which phenyl ring was attacked in the radical cyclization, 3-phenyl-1-(p-tolyl)prop-2-yn-1-ol 1b was reacted with diphenyl disulfide 2a under standard conditions. Phenylcyclized product 16 was isolated in 72% yield, and tolyl cyclized product 23 could not be detected. Moreover, the structure of product 16 was confirmed by X-ray crystallography (Scheme 2). These results suggested that arylpropynols underwent a

Meyer-Schuster rearrangement and then radical cyclization occurred. Subsequently, another substituent on R^{2} was investigated. o-Tolyl provided product 17 in 55% yield, and 4-ethylphenyl afforded product 18 in 61% yield. Fluoride and chloride products $\mathbf{1 9 - 2 1}$ were obtained in $63-80 \%$ yields. It was notable that an acceptable 32% yield of 22 could be obtained when R^{2} was an aliphatic cyclohexyl group. Finally, some R^{1} groups at the para position of phenyl were investigated. Electron-donating groups such as methyl, ethyl, and n-butyl provided products $23-25$ in $63-70 \%$ yields. Electron-poor fluoride, chloride, and bromide phenyl gave products $26-28$ in slightly lower yields (51-65\%). The regioselectivity was observed when m-chloro-substituted arylpropynol was reacted with diphenyl disulfide 2 a , and 6-position-cyclized product 29a was isolated in 62% yield along with 2-position-cyclized 29b in 21% yield.

To further understand this transformation, the reaction of 1,3-diphenylprop-2-yn-1-one 30 with diphenyl disulfide 2 a was conducted under the optimal reaction conditions, and only a trace amount of product 3 was observed (Scheme 3, eq 4). These results suggested that this reaction did not proceed via the oxidation of 1a to 1,3 -diarylpropynones and its subsequent intramolecular cyclization. Moreover, the reaction of substrate $\mathbf{1 a}$ and diphenyl disulfide $\mathbf{2 a}$ was conducted in the presence of 2.5 equiv of $2,2,6,6$-tetramethyl-1-piperidinyloxy (TEMPO), a radical scavenger; however, the reaction was completely restrained, and most of substrate 1a was recovered (Scheme 3, eq 5). All of the results described above disclosed that this tandem reaction might be involved in a radical process.

On the basis of the obtained experimental results and previous reports, ${ }^{12 \mathrm{~b}, 13 \mathrm{~d}}$ a plausible mechanism is proposed for this reaction (Scheme 4). Propargyl alcohol is first transformed to active allenol intermediate A via the acid-catalyzed MeyerSchuster rearrangement under acidic reaction conditions. In the presence of BPO and I_{2}, diphenyl sulfide decomposes to yield free radical PhS^{\bullet}, which selectively attacks the double bond of intermediate A to give alkyl radical B. Subsequently, intermediate \mathbf{B} undergoes keto-enol tautomerism and intramolecular radical cyclization to generate cyclohexadienyl radical C. Single-electron transfer and deprotonation of cyclohexadienyl radical C in the presence of $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ give dihydroindenone $\mathbf{D},{ }^{17}$ which can be oxidized to desired product 3.

In conclusion, we have developed an effective method for the synthesis of 2 -sulfenylindenone derivatives from the iodinemediated one-pot tandem cyclization of arylpropynols and disulfides. The reaction proceeded via a Meyer-Schuster rearrangement of arylpropynols, followed by sulfenyl radical addition to allenol and final cyclization. A variety of arylpropynols and disulfides bearing aryl or alkyl groups underwent the tandem reaction smoothly to give the corresponding 2 -sulfenylindenones in moderate to good yields. This protocol would serve as a new optional route for the synthesis of 2 -sulfenylindenone derivatives.

EXPERIMENTAL SECTION

General Information. Chemicals were either purchased or purified by standard techniques. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a 500 MHz spectrometer $\left({ }^{1} \mathrm{H}\right.$ at 500 MHz , ${ }^{13} \mathrm{C}$ at 125 MHz), using CDCl_{3} as the solvent with tetramethylsilane (TMS) as an internal standard at room temperature. Chemical shifts are given in δ relative to TMS, and the coupling constants (J) are given in hertz. High-resolution mass spectra were recorded on an ESI-Q-TOF mass

Table 2. Tandem Annulation of Arylpropynols with Disulfides ${ }^{a}$

${ }^{a}$ Reaction conditions: $\mathbf{1}(0.2 \mathrm{mmol}), \mathbf{2}(0.2 \mathrm{mmol}), \mathrm{I}_{2}\left(2\right.$ equiv), BPO ($30 \mathrm{~mol} \%$), and $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ (2 equiv) in $\mathrm{HOAc}(2 \mathrm{~mL})$ under a N_{2} atmosphere at $120^{\circ} \mathrm{C}$ for $24 \mathrm{~h} .{ }^{b} \mathrm{MeNO}_{2}$ was used as the solvent.

Scheme 2. Selective Cyclization and X-ray Structure of Compound 16

Scheme 3. Control Experiment

Scheme 4. Possible Mechanism

spectrometer. All reactions under a nitrogen atmosphere were conducted using standard Schlenk techniques. Melting point data are uncorrected. Column chromatography was performed using EM silica gel 60 (300-400 mesh).

Typical Experimental Procedure for the Synthesis of Arylpropynol. ${ }^{15}$ To a solution of alkyne (13 mmol) in anhydrous THF (30 mL) at $-78{ }^{\circ} \mathrm{C}$ under a N_{2} atmosphere was added n-BuLi (1.6 mol in hexanes, $6.9 \mathrm{~mL}, 11 \mathrm{mmol}$). The reaction mixture was stirred at this temperature for 20 min and then at room temperature for 1 h . After the mixture had been cooled to $-78^{\circ} \mathrm{C}$, aldehyde (10 mmol) was added to the mixture and the mixture allowed to warm to room temperature gradually and stirred for an additional 1 h before the reaction was quenched with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with EtOAc $(3 \times 10 \mathrm{~mL})$, and the combined oganic phases were washed with water and brine, dried with anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under pressure, and the residue was purified by flash chromatography on silica gel [15:1 (v/v) hexanes/ethyl acetal] to produce the desired alcohol as a yellow oil.

General Procedure for the Synthesis of Thiolated Indenones. Under a N_{2} atmosphere, an oven-dried reaction vessel was charged with 1,3-diarylpropynones $\mathbf{1}(0.2 \mathrm{mmol})$, disulfides 2 (0.2 $\mathrm{mmol}), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(0.4 \mathrm{mmol}), \mathrm{I}_{2}(0.4 \mathrm{mmol}), \mathrm{BPO}(0.06 \mathrm{mmol})$, and $\mathrm{AcOH}(2 \mathrm{~mL})$. The vessel was sealed and heated at $120^{\circ} \mathrm{C}$ for 24 h and then cooled to room temperature. The mixture was cleaned with a saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ solution three times and extracted with ethyl acetate three times, and the combined organic layer was dried over anhydrous MgSO_{4}. After removal of the solvent under reduced pressure, the residue was purified by silica gel column chromatography [50:1 (v / v) petroleum ether ($\mathrm{bp} 60-90^{\circ} \mathrm{C}$)/EtOAc gradients] to give products 3-29.

3-Phenyl-2-(phenylthio)-1H-inden-1-one (3). ${ }^{12 a}$ Red solid (51.6 $\mathrm{mg}, 82 \%$ yield): mp $125-127^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.59-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 3 \mathrm{H})$, 7.39-7.36 (m, 1H), 7.29-7.24 (m, 3H), 7.20-7.17 (m, 3H), 7.14$7.11(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.2,162.0$, 144.5, 134.8, 133.8, 131.8, 131.1, 130.3, 129.5, 129.3, 129.0, 128.7, 128.6, 127.4, 126.5, 123.5, 121.8; LRMS (EI, 70 eV) m/z (\%) 314 ($\mathrm{M}^{+}, 100$), 165 (43), 313, 221 (29), 237 (27).

3-Phenyl-2-(p-tolylthio)-1H-inden-1-one (4). Red solid (57.8 mg , 88% yield): mp $154-156{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58$ (d,
$J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.25$ $(\mathrm{m}, 1 \mathrm{H}), 7.20-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.01(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.3,161.0,144.6,136.7,133.7$, 131.9, 131.1, 130.8, 130.2, 129.9, 129.8, 129.3, 128.63, 128.62, 128.0, 123.5, 121.6, 21.2; LRMS (EI, 70 eV) m/z (\%) 328 ($\mathrm{M}^{+}, 100$), 165 (30), 300 (29), 327 (27), 329 (26); HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{OS}^{+}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right) 329.0995$, found 329.0989 .

2-[(4-Methoxyphenyl)thio]-3-phenyl-1H-inden-1-one (5). Red solid ($52.4 \mathrm{mg}, 76 \%$ yield): mp $136-137^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.58-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.34(\mathrm{~m}$, $1 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.15(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{\{ } \mathrm{H}\right\}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 193.5, 159.7, 159.2, 144.7, 133.7, 132.7, 131.9, 131.0, 130.1, 129.2, 128.9, 128.7, 128.6, 124.3, 123.4, 121.4, 114.7, 55.4; LRMS (EI, 70 eV) $\mathrm{m} / \mathrm{z}(\%)$ 344 ($\mathrm{M}^{+}, 100$), 345 (24), 151 (23), 343 (22), 165 (20); HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{~S}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 345.0944$, found 345.0963.

2-[(2-Fluorophenyl)thio]-3-phenyl-1H-inden-1-one (6). Red solid ($40.6 \mathrm{mg}, 61 \%$ yield): mp $106-107{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.29-$ $7.25(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.00-6.94(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 192.8,160.9\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=245.0 \mathrm{~Hz}\right), 160.7,144.5$, $133.8,132.3,131.6,131.1,130.2,129.3,128.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}=8.8 \mathrm{~Hz}\right)$, 128.6, 128.5, 126.3, $124.5\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 123.5,121.6,121.1(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{CF}}=16.3 \mathrm{~Hz}\right), 115.8\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=21.3 \mathrm{~Hz}\right)$; LRMS (EI, 70 eV$) \mathrm{m} / \mathrm{z}(\%)$ 332 ($\mathrm{M}^{+}, 100$), 221 (44), 165 (41), 176 (26), 333 (24); HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{FOS}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$333.0744, found 333.0756.

2-[(3-Fluorophenyl)thio]-3-phenyl-1H-inden-1-one (7). Red solid $\left(41.9 \mathrm{mg}, 63 \%\right.$ yield): mp $112-114^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 3 \mathrm{H})$, $7.43-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.19-7.15 (m, 1H), 7.06-7.05 (m, 1H), 6.98-6.95 (m, 1H), 6.85$6.81(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 192.9,162.9(\mathrm{~d}$, $\left.{ }^{1} J_{\mathrm{CF}}=246.3 \mathrm{~Hz}\right), 163.0,144.3,137.3\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=7.5 \mathrm{~Hz}\right), 133.9,131.6$, 131.1, 130.5, $130.2\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=8.8 \mathrm{~Hz}\right), 129.8,128.7,128.6,126.3$, 124.6, 123.7, 122.0, $115.9\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=23.8 \mathrm{~Hz}\right), 113.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=21.3\right.$ Hz); LRMS (EI, 70 eV) $m / z(\%) 332\left(\mathrm{M}^{+}, 60\right), 207$ (100), 331 (70), 281 (45), 73 (42); HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{FOS}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 333.0744, found 333.0753.

2-[(4-Fluorophenyl)thio]-3-phenyl-1H-inden-1-one (8). Red solid ($43.3 \mathrm{mg}, 65 \%$ yield): $\mathrm{mp} 172-174^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.29-$ $7.25(\mathrm{~m}, 3 \mathrm{H}), 7.17(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.87(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.2,162.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}}=245.0 \mathrm{~Hz}\right), 161.0$, 144.5, 133.8, $132.2\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}=7.5 \mathrm{~Hz}\right), 131.8,131.0,130.3,129.5$, 129.3, 128.7, 128.6, 127.9, 123.5, 121.7, $116.1\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=22.5 \mathrm{~Hz}\right.$); LRMS (EI, 70 eV) m/z (\%) $332\left(\mathrm{M}^{+}, 100\right), 165(44), 304(34), 139$ (31), 333 (30); HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{FOS}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 333.0744, found 333.0755 .

2-[(2-Chlorophenyl)thio]-3-phenyl-1H-inden-1-one (9). Red solid ($41.9 \mathrm{mg}, 60 \%$ yield): $\mathrm{mp} 156-158{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.45-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.27-$ $7.22(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.08(\mathrm{~m}, 1 \mathrm{H}), 7.03-6.99$ $(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 192.7, 162.8, 144.4, 134.2, 133.8, 133.3, 131.6, 131.1, 130.4, 130.1, 129.9, 129.6, 128.7, 128.5, 127.3, 127.1, 126.0, 123.6, 121.9; LRMS (EI, 70 eV) $\mathrm{m} / \mathrm{z}(\%)$ 348 ($\mathrm{M}^{+}, 33$), 313 (100), 207 (36), 165 (25), 314 (24); HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{ClOS}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 349.0448$, found 349.0454 .
2-[(3-Chlorophenyl)thio]-3-phenyl-1H-inden-1-one (10). Red solid ($43.3 \mathrm{mg}, 62 \%$ yield): mp $135-137{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.59-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.51-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.42-7.39(\mathrm{~m}$, $1 \mathrm{H}), 7.33-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.09(\mathrm{~m}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 192.9, 162.7, 144.3, 136.9, 134.8, 133.9, 131.6, 131.0, 130.5, 130.0, 129.7, 128.7, 128.5, 127.7, 127.2, 126.7, 126.3, 123.7, 122.0; LRMS (EI, 70 eV) $m / z(\%) 348\left(\mathrm{M}^{+}, 100\right)$, 165 (64), 221 (40), 350 (39), 284 (34); HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{ClOS}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$349.0448, found 349.0444.

2-[(4-Chlorophenyl)thio]-3-phenyl-1H-inden-1-one (11). Red solid ($49.5 \mathrm{mg}, 71 \%$ yield): mp $135-136{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.59-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.49(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.38(\mathrm{~m}$, $1 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.16(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.0,162.0,144.4,133.8,133.2$, 132.7, 131.7, 131.0, 130.8, 130.4, 129.6, 129.1, 128.7, 128.6, 127.0, 123.6, 121.8; LRMS (EI, 70 eV) $\mathrm{m} / \mathrm{z}(\%) 348\left(\mathrm{M}^{+}, 24\right), 207$ (100), 281 (43), 208 (26), 341 (20); HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{ClOS}^{+}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right) 349.0448$, found 349.0448 .

2-[(3,5-Dichlorophenyl)thio]-3-phenyl-1H-inden-1-one (12). Red oil ($42.2 \mathrm{mg}, 55 \%$ yield): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58-7.56$ $(\mathrm{m}, 3 \mathrm{H}), 7.52-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.44-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 1 \mathrm{H})$, $7.26-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.6,163.5,144.2,138.5,135.3,134.0,131.4,131.0,130.7,130.0$, 128.8, 128.5, 126.9, 126.7, 125.3, 123.8, 122.2; LRMS (EI, 70 eV) m/z (\%) $382\left(\mathrm{M}^{+}, 100\right), 165$ (99), 384 (71), 221 (59), 176 (41); HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{OS}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 383.0059$, found 383.0053 .

2-[(3-Nitrophenyl)thio]-3-phenyl-1H-inden-1-one (13). Red solid ($43.1 \mathrm{mg}, 60 \%$ yield): mp $124-126^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.97-7.95(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.55(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.44-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.32(\mathrm{~m}$, $2 \mathrm{H}), 7.25-7.24(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 192.7$, 163.3, 148.6, 144.2, 137.7, 134.6, 134.1, 131.4, 130.9, 130.7, 130.0, 129.6, 128.8, 128.5, 125.3, 123.8, 123.6, 122.2, 121.3; LRMS (EI, 70 $\mathrm{eV}) \mathrm{m} / \mathrm{z}(\%) 359\left(\mathrm{M}^{+}, 100\right), 165(64), 221(42), 284(25), 360(24)$; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{NO}_{3} \mathrm{~S}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 360.0689$, found 360.0697.

2-[(4-Nitrophenyl)thio]-3-phenyl-1H-inden-1-one (14). Yellow solid ($48.2 \mathrm{mg}, 67 \%$ yield): mp $187-189{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 6 \mathrm{H}), 7.40-7.29(\mathrm{~m}$, $2 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 192.4$, 165.0, 146.0, 145.4, 144.0, 134.1, 131.3, 131.0, 130.3, 128.9, 128.5, 127.8, 126.7, 124.6, 124.1, 123.9, 122.5; LRMS (EI, 70 eV) $\mathrm{m} / \mathrm{z}(\%)$ $359\left(\mathrm{M}^{+}, 100\right), 165$ (53), 221 (40), 360 (24), 284 (21); HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{NO}_{3} \mathrm{~S}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 360.0689$, found 360.0695 .

2-(Ethylthio)-3-phenyl-1H-inden-1-one (15). Red solid (28.8 mg , 54% yield): mp $92-94{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58-7.55$ $(\mathrm{m}, 2 \mathrm{H}), 7.54-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 1 \mathrm{H})$, $7.08(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.20(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $3 \mathrm{H})$, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 194.4,157.2,145.1,133.8$, 132.4, 131.4, 129.8, 129.4, 128.7, 128.6, 128.5, 123.2, 120.7, 26.6, 15.5; LRMS (EI, 70 eV) m/z (\%) $266\left(\mathrm{M}^{+}, 59\right), 233(100), 165(82), 215$
(33), 237 (27); HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{OS}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 267.0838, found 267.0845 .

2-(Phenylthio)-3-(p-tolyl)-1H-inden-1-one (16). Red solid (47.3 $\mathrm{mg}, 72 \%$ yield): $\mathrm{mp} 84-86{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 7.52-$ $7.50(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.18(\mathrm{~m}$, 4H), $7.14-7.11(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz , CDCl_{3}) δ 193.3, 162.5, 144.5, 140.8, 135.2, 133.7, 131.3, 129.5, 129.4, 129.2, 129.0, 128.9, 128.7, 126.7, 126.4, 123.4, 121.8, 21.7; LRMS (EI, $70 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%) 328\left(\mathrm{M}^{+}, 100\right), 313$ (29), 329, 327 (27), 121 (25); HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{OS}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 329.0995$, found 329.1010.

2-(Phenylthio)-3-(o-tolyl)-1H-inden-1-one (17). Red solid (36.1 $\mathrm{mg}, 55 \%$ yield): mp $125-127{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.52-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 5 \mathrm{H}), 7.19-$ $7.11(\mathrm{~m}, 4 \mathrm{H}), 6.77(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.2,162.4,145.4,135.9,134.1,133.7,131.8$, 130.7, 130.5, 130.4, 129.6, 129.4, 129.3, 128.9, 128.0, 126.9, 126.0, 123.3, 121.4, 20.3; LRMS (EI, 70 eV) $\mathrm{m} / \mathrm{z}(\%) 328$ (${ }^{+}, 100$), 219 (78), 189 (31), 191 (28), 329 (26); HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{OS}^{+}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right) 329.0995$, found 329.0990 .

3-(4-Ethylphenyl)-2-(phenylthio)-1H-inden-1-one (18). ${ }^{12 a}$ Red solid ($41.8 \mathrm{mg}, 61 \%$ yield): $\mathrm{mp} 91-93{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.54-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.11(\mathrm{~m}, 1 \mathrm{H})$, $2.72(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.3,162.3,147.0,144.6,135.1,133.6,131.3,129.5$, 129.2, 129.0, 128.8, 128.2, 127.9, 126.7, 126.4, 123.4, 121.9, 29.1, 15.4; LRMS (EI, 70 eV) m/z (\%) 342 ($\mathrm{M}^{+}, 100$), 313 (75), 314 (29), 343 (26), 121 (25).

3-(2-Fluorophenyl)-2-(phenylthio)-1H-inden-1-one (19). Red solid ($53.2 \mathrm{mg}, 80 \%$ yield): $\mathrm{mp} 132-134{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 1 \mathrm{H})$, $7.29(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.11(\mathrm{~m}, 4 \mathrm{H}), 6.96$ $(\mathrm{d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 192.7,159.9$ $\left(\mathrm{d},{ }^{1}{ }_{\mathrm{CF}}=248.8 \mathrm{~Hz}\right), 155.6,144.6,134.1,133.6,131.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}=7.5\right.$ Hz), 130.9, 130.4, 130.3, 130.2, 129.3, 128.9, 128.0, 126.9, 124.3, 123.4, 121.4, $116.4\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=21.3 \mathrm{~Hz}\right.$); LRMS (EI, 70 eV) $\mathrm{m} / \mathrm{z}(\%)$ $332\left(\mathrm{M}^{+}, 100\right), 183$ (36), 333 (23), 237, 331 (18); HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{FOS}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$333.0744, found 333.0740.

3-(4-Fluorophenyl)-2-(phenylthio)-1H-inden-1-one (20). Red solid ($41.9 \mathrm{mg}, 63 \%$ yield): $\mathrm{mp} 131-133{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.37(\mathrm{~m}, 1 \mathrm{H})$, 7.30-7.24 (m, 3H), 7.20-7.16 (m, 4H), 7.15-7.11 (m, 2H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.0,163.8\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=250 \mathrm{~Hz}\right), 160.6$, 144.4, 136.7, 134.5, 133.8, 131.1, $130.8\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=8.8 \mathrm{~Hz}\right), 129.6$, 129.5, 129.4, 129.1, 126.7, 123.6, 121.5, $115.9\left({ }^{(d, ~}{ }^{2}{ }^{\mathrm{JFF}}=21.3 \mathrm{~Hz}\right)$; LRMS (EI, 70 eV) m/z (\%) 332 ($\mathrm{M}^{+}, 100$), 183 (31), 239 (30), 331 (27), 255 (26); HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{FOS}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 333.0744, found 333.0750 .

3-(4-Chlorophenyl)-2-(phenylthio)-1H-inden-1-one (21). Red solid ($52.3 \mathrm{mg}, 75 \%$ yield): mp $85-87{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.54-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.47-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.38(\mathrm{~m}$, $1 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.14(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 192.8, 160.2, 144.2, 136.7, 136.3, 134.3, 133.9, 131.0, 130.2, 130.0, 129.6, 129.1, 129.0, 128.1, 126.8, 123.7, 121.4; LRMS (EI, 70 eV) $\mathrm{m} / \mathrm{z}(\%) 348\left(\mathrm{M}^{+}, 100\right)$, 350 (41), 320, 284 (38), 163 (32); HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{ClOS}^{+}$($[\mathrm{M}+$ $\left.\mathrm{H}]^{+}\right) 349.0448$, found 349.0452 .

3-Cyclohexyl-2-(phenylthio)-1H-inden-1-one (22). Yellow solid ($20.5 \mathrm{mg}, 32 \%$ yield): mp $90-92{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 3 \mathrm{H})$, 7.25-7.22 (m, 2H), 7.16-7.13 (m, 1H), 3.22-3.16 (m, 1H), 1.97$1.86(\mathrm{~m}, 4 \mathrm{H}), 1.82-1.75(\mathrm{~m}, 3 \mathrm{H}), 1.43-1.34(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 193.7, 172.3, 143.6, 135.9, 133.6, 131.5, 129.4, 129.1, 128.6, 126.2, 126.1, 123.1, 121.7, 39.9, 30.0, 26.3, 26.1; LRMS (EI, 70 eV$) \mathrm{m} / \mathrm{z}(\%) 320\left(\mathrm{M}^{+}, 100\right), 143(32), 115(29), 321,211$ (24); HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{OS}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 321.1308$, found 321.1308.

5-Methyl-3-phenyl-2-(phenylthio)-1H-inden-1-one (23). Red solid ($46.0 \mathrm{mg}, 70 \%$ yield): $\mathrm{mp} 130-132{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\delta 7.59-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.43(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.28-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.10-$ $7.08(\mathrm{~m}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 192.9,161.8,145.0,144.8,135.0,132.0,130.2,129.5,129.2$, 129.0, 128.7, 128.6, 128.5, 127.7, 126.5, 123.7, 123.0, 22.2; LRMS (EI, $70 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%) 328\left(\mathrm{M}^{+}, 100\right), 300$ (39), 329 (26), 327, 251 (23); HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{OS}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$329.0995, found 329.0993.

5-Ethyl-3-phenyl-2-(phenylthio)-1H-inden-1-one (24). Red solid ($43.1 \mathrm{mg}, 63 \%$ yield): $\mathrm{mp} 119-121{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.59-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.46(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.28-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{~s}$, $1 \mathrm{H}), 2.65(\mathrm{q}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.23(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 192.9,161.9,151.2,145.0,135.0,132.0,130.2$, 129.2, 129.0, 128.9, 128.8, 128.6, 128.4, 127.7, 126.4, 123.8, 122.0, 26.9, 15.4; LRMS (EI, 70 eV) m/z (\%) 342 ($\mathrm{M}^{+}, 100$), 314 (38), 313 (31), 343 (27), 299 (23); HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{OS}^{+}$([M + $\mathrm{H}]^{+}$) 343.1151, found 343.1160.

5-Butyl-3-phenyl-2-(phenylthio)-1H-inden-1-one (25). Red solid ($48.2 \mathrm{mg}, 65 \%$ yield): $\mathrm{mp} 73-75{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.59-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.44(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.28-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{~s}$, $1 \mathrm{H}), 2.60(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.59-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.33(\mathrm{~m}, 2 \mathrm{H})$, $0.92(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 192.9$, 161.9, 149.9, 144.9, 135.0, 132.0, 130.1, 129.3, 129.0, 128.9, 128.8, 128.7, 128.6, 127.7, 126.5, 123.7, 122.4, 36.3, 33.4, 22.5, 14.0; LRMS (EI, 70 eV$) \mathrm{m} / z(\%) 370\left(\mathrm{M}^{+}, 100\right), 313$ (34), 371 (33), 299, 207 (25); HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{OS}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 371.1464$, found 371.1467.

5-Fluoro-3-phenyl-2-(phenylthio)-1H-inden-1-one (26). Red solid ($43.2 \mathrm{mg}, 65 \%$ yield): mp $159-161{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.22-$ $7.19(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.14(\mathrm{~m}, 1 \mathrm{H}), 6.94-6.91(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 191.3,166.6\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}}=253.8 \mathrm{~Hz}\right), 158.7,147.9$, 134.0, 131.4, 130.4, 129.9, 129.5, 129.1, 128.8, 128.5, 127.0, 126.9, $125.4\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=10.0 \mathrm{~Hz}\right), 114.9\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=22.5 \mathrm{~Hz}\right), 110.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=\right.$ 26.3 Hz); LRMS (EI, 70 eV$) \mathrm{m} / \mathrm{z}(\%) 332\left(\mathrm{M}^{+}, 100\right), 183$ (31), 239 (30), 331 (27), 255 (26); HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{FOS}^{+}$([M + $\mathrm{H}]^{+}$) 333.0744, found 333.0749.

5-Chloro-3-phenyl-2-(phenylthio)-1H-inden-1-one (27). Red solid ($42.6 \mathrm{mg}, 61 \%$ yield): mp $151-153{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.28-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.7,159.6,146.4,140.2,134.0,131.3$, 130.5, 129.8, 129.3, 129.2, 129.1, 128.9, 128.8, 128.5, 126.9, 124.4, 122.3; LRMS (EI, 70 eV$) \mathrm{m} / \mathrm{z}(\%) 348\left(\mathrm{M}^{+}, 100\right), 350$ (42), 284 (36), 255 (34), 349 (32); HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{ClOS}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 349.0448, found 349.0444.

5-Bromo-3-phenyl-2-(phenylthio)-1H-inden-1-one (28). Red solid ($40.1 \mathrm{mg}, 51 \%$ yield): mp $140-141{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.49(\mathrm{~m}, 2 \mathrm{H})$, $7.41-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.15-$ $7.13(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 193.2, 162.0, 144.6, 134.8, 133.8, 131.9, 131.1, 130.3, 129.5, 129.4, 129.0, 128.7, 128.6, 127.4, 126.6, 123.6, 121.8; LRMS (EI, 70 eV) m/z (\%) 394/392 ($\mathrm{M}^{+}, 100$), 284 (60), 163 (59), 313 (52); HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{BrOS}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 392.9943$, found 392.9945 .

6-Chloro-3-phenyl-2-(phenylthio)-1H-inden-1-one (29a). Red solid ($43.3 \mathrm{mg}, 62 \%$ yield): mp $109-111{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.58-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.35$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.16-$ $7.13(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 191.9, 161.3, 142.6, 135.8, 134.3, 133.0, 132.7, 131.4, 130.6, 129.6, 129.1, 128.8, 128.5, 127.7, 126.8, 124.1, 122.6; LRMS (EI, 70 eV) m / z (\%) 348 ($\mathrm{M}^{+}, 100$), 255 (54), 284 (40), 350 (36), 176 (29); HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{ClOS}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 349.0448$, found 349.0471.

4-Chloro-3-phenyl-2-(phenylthio)-1H-inden-1-one (29b). Red solid ($14.7 \mathrm{mg}, 21 \%$ yield): mp $142-144{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.45-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.28(\mathrm{~m}$, $1 \mathrm{H}), 7.27-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.17(\mathrm{~m}, 1 \mathrm{H})$;
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 191.7, 162.6, 139.9, 136.8, 133.9, 133.1, 132.9, 131.7, 130.7, 130.3, 129.4, 129.0, 128.7, 128.3, 128.2, 127.0, 121.9; LRMS (EI, 70 eV) $\mathrm{m} / \mathrm{z}(\%) 348\left(\mathrm{M}^{+}, 100\right), 350$ (38), 284 (37), 349 (31), 121 (28); HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{ClOS}^{+}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$349.0448, found 349.0468.

ASSOCIATED CONTENT

(S) Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.6b00762.

Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for products 3-29 (PDF)
X-ray data for compound 16 (CIF)

AUTHOR INFORMATION

Corresponding Authors

*E-mail: kamenzxh@wzu.edu.cn.
*E-mail: zxg@wzu.edu.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the National Natural Science Foundation of China (21272177 and 21302144) and the Zhejiang Provincial Natural Science Foundation of China (LR15B020002) for financial support.

REFERENCES

(1) (a) Ahn, J. H.; Shin, M. S.; Jung, S. H.; Kang, S. K.; Kim, K. R.; Rhee, S. D.; Jung, W. H.; Yang, S. D.; Kim, S. J.; Woo, J. R.; Lee, J. H.; Cheon, H. G.; Kim, S. S. J. Med. Chem. 2006, 49, 4781. (b) Saxena, H. O.; Faridi, U.; Srivastava, S.; et al. Bioorg. Med. Chem. Lett. 2008, 18, 3914. (c) Hatcher, J. M.; Weisberg, E.; Sim, T.; Stone, R. M.; Liu, S.; Griffin, J. D.; Gray, N. S. ACS Med. Chem. Lett. 2016, 7, 476. (d) Anstead, G. M.; Altenbach, R. J.; Wilson, S. R.; Katzenellenbogen, J. A. J. Med. Chem. 1988, 31, 1316.
(2) Frank, R. L.; Eklund, H.; Richter, J. W.; Vanneman, C. R.; Wennerberg, A. N. J. Am. Chem. Soc. 1944, 66, 1.
(3) Jourdan, G. P.; Dreikorn, B. A.; Hackler, R. E.; Hall, H. R.; Arnold, W. R. In Synthesis and Chemistry of Agrochemicalals II; ACS Symposium Series; American Chemical Society: Washington, DC, 1991; p 566.
(4) Anstead, G. M.; Ensign, J. L.; Peterson, C. S.; Katzenellenbogen, J. A. J. Org. Chem. 1989, 54, 1485.
(5) (a) Beck, D. E.; Reddy, P. V. N.; Lv, W.; Abdelmalak, M.; Tender, G. S.; Lopez, S.; Agama, K.; Marchand, C.; Pommier, Y.; Cushman, M. J. Med. Chem. 2016, 59, 3840. (b) Lv, P.-C.; Elsayed, M. S. A.; Agama, K.; Marchand, C.; Pommier, Y.; Cushman, M. J. Med. Chem. 2016, 59, 4890. (c) Nagarajan, M.; Morrell, A.; Ioanoviciu, A.; Antony, S.; Kohlhagen, G.; Agama, K.; Hollingshead, M.; Pommier, Y.; Cushman, M. J. Med. Chem. 2006, 49, 6283.
(6) Chatterjee, A.; Banerjee, S. Tetrahedron 1970, 26, 2599.
(7) House, H. O.; Larson, J. K. J. Org. Chem. 1968, 33, 448.
(8) (a) Floyd, M. B.; Allen, G. R., Jr J. Org. Chem. 1970, 35, 2647.
(b) Galatsis, P.; Manwell, J. J.; Blackwell, J. M. Can. J. Chem. 1994, 72, 1656.
(9) (a) Kokubo, K.; Matsumasa, K.; Miura, M.; Nomura, M. J. Org. Chem. 1996, 61, 6941. (b) Larock, R. C.; Doty, M. J.; Cacchi, S. J. Org. Chem. 1993, 58, 4579. (c) Pletnev, A. A.; Tian, Q.; Larock, R. C. J. Org. Chem. 2002, 67, 9276.
(10) (a) Kundu, K.; McCullagh, J. V.; Morehead, A. T., Jr J. Am. Chem. Soc. 2005, 127, 16042. (b) Larock, R. C.; Tian, Q.; Pletnev, A. A. J. Am. Chem. Soc. 1999, 121, 3238. (c) Morimoto, T.; Yamasaki, K.; Hirano, A.; Tsutsumi, K.; Kagawa, N.; Kakiuchi, K.; Harada, Y.; Fukumoto, Y.; Chatani, N.; Nishioka, T. Org. Lett. 2009, 11, 1777.
(d) Miura, T.; Murakami, M. Org. Lett. 2005, 7, 3339. (e) Harada, Y.; Nakanishi, J.; Fujihara, H.; Tobisu, M.; Fukumoto, Y.; Chatani, N. J. Am. Chem. Soc. 2007, 129, 5766. (f) Zhao, P.; Liu, Y.; Xi, C. Org. Lett. 2015, 17, 4388.
(11) (a) Vasilyev, A. V.; Walspurger, S.; Haouas, M.; Sommer, J.; Pale, P.; Rudenko, A. P. Org. Biomol. Chem. 2004, 2, 3483. (b) Vasilyev, A. V.; Walspurger, S.; Pale, P.; Sommer, J. Tetrahedron Lett. 2004, 45, 3379. (c) Vasil'ev, A. V.; Walspurger, S.; Pale, P.; Sommer, J.; Haouas, M.; Rudenko, A. P. Russ. J. Org. Chem. 2004, 40, 1769.
(12) (a) Zhou, J.; Zhang, G. - L.; Zou, J. - P.; Zhang, W. Eur. J. Org. Chem. 2011, 2011, 3412. (b) Pan, C.; Huang, B.; Hu, W.; Feng, X.; Yu, J.-T. J. Org. Chem. 2016, 81, 2087.
(13) (a) Hu, B.-L.; Pi, S.-S.; Qian, P.-C.; Li, J.-H.; Zhang, X.-G. J. Org. Chem. 2013, 78, 1300. (b) Du, H.-A.; Tang, R.-Y.; Deng, C.-L.; Liu, Y.; Li, J.-H.; Zhang, X.-G. Adv. Synth. Catal. 2011, 353, 2739. (c) Du, H.A.; Zhang, X.-G.; Tang, R.-Y.; Li, J.-H. J. Org. Chem. 2009, 74, 7844.
(d) Yang, Z.-J.; Hu, B.-L.; Deng, C.-L.; Zhang, X.-G. Adv. Synth. Catal. 2014, 356, 1962.
(14) (a) Koeller, K. M.; Wong, C.-H. Chem. Rev. 2000, 100, 4465.
(b) Climent, M. J.; Corma, A.; Iborra, S. Chem. Rev. 2011, 111, 1072.
(15) Yan, W.; Wang, Q.; Chen, Y.; Petersen, J. L.; Shi, X. Org. Lett. 2010, 12, 3308.
(16) Zhu, Y.; Sun, L.; Lu, P.; Wang, Y. ACS Catal. 2014, 4, 1911.
(17) Liu, J.; Fan, C.; Yin, H.; Qin, C.; Zhang, G.; Zhang, X.; Yi, H.; Lei, A. Chem. Commun. 2014, 50, 2145.

[^0]: Received: April 7, 2016
 Published: May 27, 2016

